from Michael A. Sullivan, Mayor of the City of Cambridge, and Thomas Fowler-Finn, Superintendent of Cambridge Public Schools

Cambridge Public School students are learning from the rich university environment that surrounds them. Young kindergarten students may not know until they are older just how lucky they are to have Harvard’s renowned Museum of Natural History as a place for hands-on contact with the natural world, but as parents and educators, we are well aware of the many resources that Harvard brings to bear on student learning. As the school district expands its science curriculum (such as the new science research course at CRLS) and its commitment to science education, the new Science Initiative is reaching out to every student and every teacher in Cambridge to engage them in exceptional opportunities for in-depth science work.

Harvard University is key to helping us reach the goal of providing Cambridge Public School students with the best science education in the nation. Elementary, middle school and high school students, as well as our teachers, have benefited from museum and departmental resources, donated equipment, working directly with professors, teaching partnerships, and professional training that is unique to our district. We are grateful for the opportunities that connecting with Harvard provides. The stories on these pages show the variety of programs that students participate in, and an excitement for learning science that is in part derived from the enthusiastic effort that Harvard University has put into working with the Cambridge Public Schools.

from Lawrence H. Summers, President of Harvard University

Science is changing every aspect of the way we live. We all have a stake in promoting scientific literacy and in finding innovative solutions to pressing public problems. At Harvard, we are proud to be partners with the Cambridge Public Schools to encourage the success of all of our students.

Science partners: Harvard graduate students support CRLS

Holograms had always fascinated CRLS senior Andres Ojeda. He even tried to produce them years before, but it wasn’t until he worked with Ari Turner, a Harvard graduate student in the Division of Engineering and Applied Sciences, that he mastered holograms, this time for his science fair project. Turner helped Ojeda understand the physics behind holograms and helped him get the equipment and resources he needed, including time in a physics lab at the Harvard Science Center, to successfully produce them. The result was an original science fair project—one that caught the attention of students, teachers and the Cambridge superintendent alike. It was just one of many project ideas that Harvard graduate students helped Cambridge Rindge and Latin School students with as they prepared for the school’s annual science fair this year. Turner is one of 10 Harvard graduate students helping in Cambridge Rindge and Latin School classrooms.

“The GK-12 Fellows are an all-around resource to support physics teachers and students.”
– Melanie Barron, CPS science coordinator

“The GK-12 Fellows are an all-around resource to support physics teachers and students.”

“The Graduate students benefit by explaining the research they’re doing to students who don’t yet have an extensive science background, and fielding some of the unexpected, yet fundamental questions that these students have,” says Kathryn Hollar, director of
Cambridge teachers take technology mini-course with Harvard physics professor

Semiconductors power computers, telephones and televisions. Solar cells are becoming increasingly important as the world seeks to make better use of cleaner, renewable energy sources.

Cambridge Rindge and Latin School (CRLS) science teachers received a mini-course covering the latest research about both technologies from Harvard professor Eric Mazur. In turn, the high school teachers are passing along their knowledge to their own students at CRLS.

Mazur and his team of faculty and graduate students shared the latest about semiconductors and photovoltaics — the science of converting sunlight into electricity — with enthusiastic participants like AP physics teacher John Samp.

“The seminar is a perfect opportunity for high school and college teaching to intersect,” Samp said.

Mazur agreed. “The workshop was a great opportunity for me to put my own research in a broader perspective,” he said. “I am excited that some of it will reach the high school level.”

The seminar is one of several offered to local schools through the National Science Foundation-funded GK-12 program, which pairs Harvard graduate students from the Division of Engineering and Applied Sciences with Cambridge Public Schools District teachers to develop and share learning activities with Cambridge students.

Harvard microscopes advance CRLS science

When Harvard University donated microscope equipment to Cambridge Rindge and Latin School, some of the science teachers weren’t sure how they could integrate the sophisticated laboratory into their teaching. Two years later, the lab is in full swing with teachers and students enthusiastically taking advantage of the high-powered microscopes, cameras, software and projectors that have encouraged original research, collaborative teaching and learning, and laid a foundation for inquiry-based science education.

The lab has helped students to take science into their own hands. One student, for example, was curious about the impact of drinking Gatorade and coffee. He was able to assess how much oxygen that potato cells used after they were treated with Gatorade, coffee, or a saline solution.

The high quality of the microscopes and the supporting software allowed him to project images of the cells for the entire class.

“The student was able to photograph and display the student was able to photograph and display the microscope images,” biology teacher Maureen Havern said. “I am excited that some of it will reach the high school level.”

Havern says. “Our students are beginning to think that science is cool.”

Cutting-edge science comes to the classroom

Cambridge Rindge and Latin School science teachers are receiving training from Harvard professors in nanoscale and mezzoscale science, topics rarely taught in high schools, thanks to the Harvard-Cambridge GK-12 partnership.

The seminar series is jointly sponsored by the National Science Foundation-funded Materials Research Science & Engineering Center and the Nanoscale Science & Engineering Center based at Harvard University. The professional development is driven by the school’s interest in interdisciplinary science.

“By teaching our teachers about nanoscience, they can see the links between physics, chemistry and biology,” says Melanie Barron, K-12 coordinator for science curriculum at the Cambridge Public School District, who pointed to exciting new fields like bioinformatics, proteomics and protein-folding that approach science in an interdisciplinary way. “In the world of science research, there is no such thing as pure biology, pure chemistry, pure physics anymore … but many high schools are still set up in a layer-cake way of doing science. Now we are teaching physics first, then chemistry, and then biology. Teachers are finding ways to link the disciplines to reflect the interdisciplinary nature of current science knowledge and research.”

“Science is developing at such a rapid pace now,” agreed Kathryn Hollar, director of educational programs for Harvard’s Division of Engineering and Applied Sciences. “The pace is so much greater and the discoveries are so exciting … and high school teachers and students have a part in that.”

First Family Science Night

Hundreds of Cambridge citizens and their parents explored science mysteries at the Harvard Museum of Natural History’s first-ever Cambridge Family Science Night on April 8. Luz Mary Escobar (at left) and her daughter, Pamela Restrepo, 5, peer ed at another world as Karolyn Lee, 7, and dad Ken Lee did likewise. 

CRLS biology teacher Tobe Stomberg (right) helped Sabienne Bernard learn to use new high-tech microscopes given to CRLS by Harvard University.

“Our students are beginning to think that science is cool.” — Maureen Havern, CRLS biology teacher

The equipment and technical support, which includes assistance from Harvard instructors and graduate students, were a gift of the Harvard University Department of Molecular and Cellular Biology (MCB), with additional funding from the Howard Hughes Medical Institute (HHMI).

“It came at a time when there has been a confluence of support and integration of Harvard resources into the public schools,” Havern says.

In addition to the microscopy suite, Harvard’s Department of Molecular and Cellular Biology is working to bridge a widening gap between cutting-edge research and teaching labs through a series of MCB-HHMI outreach programs for teachers and students. For the last three years, CRLS students and teachers have attended Harvard learning labs in polymerase chain reactions and gel electrophoresis, how flies learn and remember, and the heart and the ECG, learning about specific topics while gaining valuable experience in a university laboratory.

New labs like investigating neuroscience using the C. elegans worm will premier this year. This spring, the Harvard-CRLS collaboration produced a new pilot lab, marine embryology, specifically for CRLS science teacher Paul McGinnis’ class.

“We really appreciate the effort that Harvard has been making during the past several years, and so do the students, whose interest in science is growing,” Havern says. “Our students are beginning to think that science is cool.”
Cambridge Public Schools Science Initiative strengthens Cambridge science literacy

The Cambridge Public School District has taken on the challenge of dramatically upgrading the teaching of science, but not just in the classroom.

“The district has set goals to integrate teaching science in schools with the community so that the entire city will demonstrate the characteristics of a scientifically literate community,” said Melanie Barron, CPS Science Curriculum head.

The Cambridge Science Initiative includes the following goals:

• To demonstrate the characteristics of a scientifically literate community through public lectures, discussions and events on areas of current research
• To offer an exemplary K-12 science curriculum that reflects both national and state science education standards, funding teacher participation in national education conferences and providing updated science equipment to support higher standards for science instruction.
• To offer extraordinary opportunities to teachers and students to do additional in-depth science work. This includes teacher exchanges, such as this summer’s two-week teacher exchange for 12 Cambridge teachers on the Space Coast of Florida, April vacation “science” camps, and student and teacher participation in educational research missions.
• To foster partnerships between colleges and universities, the biotechnology industry, museums and companies to encourage excellence in science teaching and learning.

A head-start on science – and college

At last year’s Crimson Summer Academy, Crimson Scholar Chynah Tyler (left) of Roxbury watched Tenzin Dotsang of Cambridge Rindge and Latin pipette drops of liquid into a small vial as part of an experiment. Harvard President Lawrence H. Summers (below right) was among the teachers for the program.

Crimson Summer Academy helps talented students thrive

Twenty-one Cambridge students, 14 of them from Cambridge Rindge and Latin School, will take classes on Harvard’s campus this summer during the Crimson Summer Academy. Harvard’s academic enrichment program for talented, low-income youth. As Crimson Scholars, the students take part in a stimulating mix of science and technology, quantitative reasoning and writing classes, academic projects, field trips and extracurricular activities aimed at supporting their academic performance in high school and helping them prepare to become strong candidates for admission to a range of challenging four-year colleges and universities.

Widening teaching and learning for Cambridge teachers

More than 60 teachers and administrators in 12 of Cambridge’s 13 public schools are working with Harvard researchers to support the use of networked technology and advance curricular development in the Cambridge Public Schools.

Affiliated with Project Zero and Project WIDE (Widescale Interactive Development for Educators), the two-year grant-based initiative offers a core group of teachers and administrators tuition-free access to online courses and the technical support needed to develop a proficiency in using technology in the classroom.

The project encourages project teams in each school to work together on curricular problems and solutions by using the Teaching for Understanding Framework, which guides planning, reflection and revision of instruction to focus on student understanding.

Test your science knowledge!

1. Whether mouse, mushroom, ameba or marigold, if you are alive and breathing, you are considered an ____________________________.
2. The study of the role of genes and proteins in health and disease is called ________________.
3. What is the cellular stuff that makes you look like you do? ________________.
4. How many chromosomes do you have? ________.
5. What is a genome? ____________________.
6. How many base pairs of DNA are in a normal human genome? ________.
7. What is the study and manipulation of materials at the atomic scale? ___________________________________________.

Science is...

Everywhere

“With much of the Cambridge economy based on developments in science, it is important to focus on integrating what is happening in research, business and in the universities in our K-12 school curriculum. By working together, we can help students and their families become engaged with the new developments in science that are literally surrounding them.”

Michael A. Sullivan, Cambridge Mayor

Teamwork

“This collaboration is about developing relationships that give our students immediate contact with powerful role models, many of whom are women and minorities, in the field of science. When you see the exchange in action, you can see the kind of impact that these relationships can have. Our students are getting the encouragement they need to go into the sciences and on to college.”

Dr. Sybil Knight, Principal of Cambridge Rindge and Latin School

Evolving rapidly

“The frontiers for biology are expanding at a rate we’ve never seen before, and there’s no question that our lives will be tremendously impacted by biology even if we’re not physicians or research scientists. Making sure that science teaching has appropriate support in high school is even more important now than in the past.”

Dr. Robert Lee, Director of Undergraduate Studies in the Biological Sciences at Harvard

Fun!

“Science is everywhere; that’s what I’ve been learning in high school for the past three years. Do you like to solve problems? Do you like to dream up inventions? Do you like doing experiments? If you do, you like science. Science is pretty cool, and you can learn a lot of different kinds of things here at CRLS _____. We do a lot of experimenting here, and it’s a lot of fun!”

Julia Berg, Junior CRLS

KUDOS! Congratulations to 11 outstanding CRLS students who were offered admission to the Harvard College Class of 2009. Seven more CRLS students have been invited to interview for places to attend the 2005 Crimson Summer Academy, joining seven who became part of the Summer Academy last year.

“Teachers today are isolated and they may not know how to take advantage of technological advances,” said Harvard Graduate School of Education’s Lois Hetland. “This initiative is helping teachers and administrators to develop professional networks among themselves so that they can work together to attack problems in classroom learning.”

Researchers estimate the initiative helps Cambridge teachers to reach more than 1,000 students each year.

Julia Spruill, Cambridge Public Schools
Harvard Museum of Natural History offers hands-on lessons for children

While field trips to museums are not unusual for elementary children, the Harvard Museum’s unique resources, and its partnership between the museum staff and public school teachers, set the Harvard Museum of Natural History programs apart.

“The reason why the science education programming is so successful is because it is a partnership,” Money says. “We ask ‘What can we do for you?’ then develop programs that fill those needs.”

For the past three years, K-8 students from Cambridge and other area public schools have experienced science in three dimensions at the Harvard Museum of Natural History and capture the world of children, whether that is actual dinosaur bones, minerals, or live animals, which is something our public schools can’t do.”

“A lot of things in museums sit in dusty nooks and crannies and there they stay,” says Pete Money, education director for the Harvard Museum of Natural History. “But here we put resources from our 23 million specimens into the hands of children, whether that is actual dinosaur bones, minerals, or live animals, which is something our public schools can’t do.”

In addition to “discovery” classes for K-5 students, the Harvard Museum of Natural History offers a range of labs and seminars that were developed in response to requests from the Cambridge Public Schools. These include a biodiversity lab for middle and high school students and mini workshops for teachers on a range of topics, such as mineralogy, paleontology, and biodiversity.

A new three-month teacher-training course called Summer Study at CRLS: Students and teachers learn from each other

For Josh Bartholomew, teaching chemistry at the Cambridge Summer Academy was like coming home. After all, as a high school student at Cambridge Rindge and Latin School years before, he had discovered his interest in science.

Now, after years of working as an environmental engineer, Bartholomew continued his training to teach science as part of an innovative partnership between the City of Cambridge and Harvard. Bartholomew is just one of many graduate students in Harvard’s Graduate School of Education’s Teacher Education Program who get real world experience in the classroom through the program.

Cambridge students, in turn, benefit by learning from enthusiastic young teachers who bring fresh perspectives to the subjects they teach. Nearly 400 Cambridge high school students sign up each year for the Cambridge Harvard Summer Academy, which is free and open to all Cambridge high-schoolers.

Last summer marked the program’s fourth year. Most students come to make up credit for classes failed in the previous year. Others give up summer vacation to prepare for advanced placement.

Upon successful completion of the six-week intensive program, students gain credit for courses in English, social studies, math and science.

“Life on Earth” premiered this year, as did a mentoring program that gives high school students experience and credit as natural history guides. New programs for Cambridge youth groups launch in the fall.

Tell us what you think! Email us at: ocgpa_feedback@harvard.edu.

(continued from page 1)

“Science is doing ... dreaming ... revealing.
Science is touching ... exploring ... amazing.
Science is seeing ... excitement ... testing...”

These words line the walls of the classroom at the Harvard Museum of Natural History and capture the scene underway. Today, kindergartners from the Baldwin School in Cambridge are experiencing what the earth was like millions of years ago.

Lisa Maloney from the museum’s staff stands in front of the trilobite, a extinct sea creature that the students through time. Young fingers explore the ridges on the water-borne trilobite fossil that lived on the earth when it was mostly covered by ocean. Those same little fingers tentatively touch the trilobite’s living ancestor, a horse-shoe crab who has been gently lifted from its tank and introduced to each child. Next are dinosaur teeth, observed up close under a microscope and projected on a screen for discussion.

“Students get a unique perspective. They see things that they never would have seen any place else.”

— Peg LeGendre, science mentor teacher for CPS

At the school’s annual science fair, Andrea Ojeda showed his project to Superintendent Thomas Fowler-Finn.

Students get a unique perspective. They see things that they never would have seen any place else. They also see things in a larger context.”

LeGendre adds that the core value is doing the science. “You’re not just talking about it, you are doing it.”

Money says Cambridge teachers are key. “How do science education is distinctly different from what other museums do because of the teachers we work with,” he says. “The teachers have been right there with us, testing pilot programs, so that we ultimately give them a product that they want and need.”

“A lot of times a partnership is in name only, but this has been a real partnership,” Money says.

In addition to “discovery” classes for K-5 students, the Harvard Museum of Natural History offers a range of labs and seminars that were developed in response to requests from the Cambridge Public Schools. These include a biodiversity lab for middle and high school students and mini workshops for teachers on a range of topics, such as mineralogy, paleontology, and biodiversity.

A new three-month teacher-training course called Summer Study at CRLS: Students and teachers learn from each other

For Josh Bartholomew, teaching chemistry at the Cambridge Summer Academy was like coming home. After all, as a high school student at Cambridge Rindge and Latin School years before, he had discovered his interest in science.

Now, after years of working as an energy engineer, Bartholomew returned to his old school to teach science as part of an innovative partnership between the City of Cambridge and Harvard. Bartholomew is just one of many graduate students in Harvard’s Graduate School of Education’s Teacher Education Program who get real world experience in the classroom through the program.

Cambridge students, in turn, benefit by learning from enthusiastic young teachers who bring fresh perspectives to the subjects they teach. Nearly 400 Cambridge high school students sign up each year for the Cambridge Harvard Summer Academy, which is free and open to all Cambridge high-schoolers.

Last summer marked the program’s fourth year. Most students come to make up credit for classes failed in the previous year. Others give up summer vacation to prepare for advanced placement.

I try to be the kind of teacher I would want,” said Josh Bartholomew about his experience as a teacher intern at CRLS.

I always knew I should have been a teacher,” said Betty Dorleans, CRLS sophomore, after the six-week program. “I learned more in summer school than in regular school.”

The experience is transformational, too, for the teacher interns, who work under the guidance of mentor teachers and use their experience toward gaining certification. For Bartholomew, being at CRLS fulfilled a dream. “I always knew I should have been a teacher,” he said. “Great teachers can have a huge effect ... a real impact on students. I try to be the kind of teacher I would want.”

© 2005 Published by the Harvard University Office of Government, Community and Public Affairs • 617.495.4955, www.community.harvard.edu

Harvard Museum of Natural History offers hands-on lessons for children